

SOLUTION GUIDE

—

Self-PoC on SingleStore Managed
Service
Nithin Krishna Reghunathan, Technical Evangelist

February 2020

Self-PoC on SingleStore Managed Service

—

Table of Contents

1. SingleStore Overview 4

2. SingleStore Managed Service 4

2.1 Benefits of SingleStore Managed Service 5

3. Cluster Prerequisites 7

4. SingleStore Studio 8

5. Key Functionalities 8

6. Operational Analytics: Build a Stock Ticker Database 10

6.1 Use Case - Stock Ticker 10

6.2 Reference Architecture 10

6.3 Spin Up a SingleStore Managed Service Cluster 12

6.4 Create Database and Table Definitions 12

6.5 Load Data into SingleStore Managed Service 13

6.6 Run Sample Queries 14

7. Streaming Analytics 15

7.1 Use Case - Clickstream Advertising 15

7.2 Reference Architecture 15

7.3 Spin Up a SingleStore Managed Service Cluster 16

7.4 Create Database and Table Definitions 16

7.5 Load Data into Cluster 18

7.6 Run Sample Queries while Streaming Data 18

8. Real-time Geospatial Analysis on Ride-sharing Data 20

8.1 Use Case: Real-time Insights on Ride-sharing Data 20

 2

Self-PoC on SingleStore Managed Service

—
8.2 Reference Architecture 21

8.3 Spin Up a SingleStore Managed Service Cluster 22

8.4 Create Database and Table Definitions 22

8.5 Load Data into Cluster 24

8.6 Run Sample Queries while Streaming Real-time Data 26

9. Visualize Data with Business Intelligence (BI) Tools 29

10. Conclusion 30

 3

Self-PoC on SingleStore Managed Service

—

1. SingleStore Overview
SingleStore is an operational database built for performing both transactions and

analytics to support the demands of modern applications, analytical systems, and ML/AI at

scale. SingleStore uses a cloud-native, distributed architecture to deliver maximum

performance and elastic scale. Note that "cloud-native" does not mean "cloud-only"; in

fact, "cloud-native" infrastructure and apps are completely flexible, being able to run on

any cloud or on-premises. SingleStore does so by offering both multi-cloud and hybrid

options, ranging from a database-as-a-service, to Kubernetes-based hybrid and private

deployments, to traditional on-premises installations on VMs or commodity hardware.

SingleStore can ingest millions of events per second, with support for ACID transactions,

while simultaneously supporting analytics, applications, machine learning model queries,

and AI queries on trillions of data rows. SingleStore can support running transactional 1

and analytical workloads under high concurrency, all while supporting the standard ANSI

SQL query language. You can read this technical whitepaper for a deep dive into the

concepts behind the SingleStore data platform.

If you’re already familiar with running SingleStore on-premises, you can now enjoy the

ultra-high performance and elastic scalability of SingleStore in the cloud.

2. Introducing SingleStore Managed Service
SingleStore’s database-as-a-service offering is called SingleStore Managed Service.

SingleStore Managed Service gives you the full capabilities of SingleStore DB without the

operational overhead and complexity of managing it yourself. SingleStore Managed

Service provides a resilient database with cloud-agnostic deployment support on AWS

and Google Cloud Platform (with support for Azure and others to come). With

SingleStore Managed Service, cluster provisioning, cluster management, deployment,

upgrades, alerting, and troubleshooting are all handled by SingleStore. This greatly

1 SingleStore Processing Shatters Trillion Rows Per Second Barrier

 4

https://img04.en25.com/Web/MemSQL/%7Bc524daed-12da-4dd0-a23f-67ea68e3472f%7D_Introduction_to_MemSQL___Technical_Whitepaper.pdf
https://www.memsql.com/blog/memsql-processing-shatters-trillion-rows-per-second-barrier/

Self-PoC on SingleStore Managed Service

—
reduces operational expenses, by shifting the database administration (DBA) tasks

needed to operate your database from your organization to SingleStore. Just as

importantly, SingleStore is offered at a price point dramatically lower than traditional

database vendors, while our ultra-efficient query engine means that operational costs for

SingleStore also tend to be lower than the proprietary offerings from the cloud service

providers.

Figure 1. SingleStore Managed Service

2.1 Benefits of SingleStore Managed Service

SingleStore Managed Service automatically backs up your data daily, with a retention

period of seven days. SingleStore Managed Service runs in high availability mode, so you

always have a live copy of your data, and SingleStore provides data restore services as

needed. To meet regulatory compliance requirements, SingleStore Managed Service

 5

Self-PoC on SingleStore Managed Service

—
supports client connections that are encrypted using transport layer security (TLS) and

data-at-rest encryption.

Customers using SingleStore Managed Services are responsible for the logical

management of their data, including schema design and implementation (DDL), index and

query tuning, assigning proper security permissions, requesting a database restore if

needed, and requesting an increase or decrease in cluster capacity.

Depending on the needs of their application, customers have several options with

SingleStore Managed Service. They can either opt to use dedicated, reserved resources if

they need strong isolation guarantees, or they can choose to go with an on-demand model

(running side-by-side with other tenants), where cluster usage is calculated hourly and

billed monthly.

Key benefits of SingleStore Managed Service include:

● Effortless deployment and management

As we have all come to expect from cloud services, deployment and upgrades are

built in. With SingleStore Managed Service you get the full benefits and capabilities

of the SingleStore data platform without having to worry about deployment,

management, or maintenance. There’s no need to rack servers, script deployments,

or manage VMs.

● Avoid cloud lock-in through multi-cloud flexibility

SingleStore Managed Service is available today on Amazon Web Services and

Google Cloud Platform, and availability on Microsoft Azure is next on the

development roadmap. SingleStore operates exactly the same whether deployed

on-premises on bare metal, on-premises on cloud infrastructure, using the

SingleStore Kubernetes Operator, or within the SingleStore Managed Service. You

can use SingleStore to support a broad set of operational and analytical use cases,

 6

https://www.memsql.com/blog/introducing-the-memsql-kubernetes-operator/

Self-PoC on SingleStore Managed Service

—
allowing for a simple, single platform across applications, analytical systems, and

cloud deployments.

● Superior TCO

Compared to either legacy databases, or proprietary databases from cloud service

providers, SingleStore Managed Service offers superior total cost of ownership

(TCO). SingleStore offers high performance, scalability, ANSI SQL support, and the

ability to replace traditional databases, at a fraction of the cost. When compared to

the proprietary databases offered on Amazon Web Services and Google Cloud

Platform, SingleStore’s unique architecture and high-performance query engine

mean that many operational analytics workloads run with far less resource

consumption, offering significant cost savings. And costs for SingleStore Managed

Service are very similar to costs if you use the SingleStore database in the cloud

directly, and manage it yourself - but with SingleStore Managed Service, the costs

and hassles of managing the infrastructure that supports the SingleStore database

are included in what you pay for the managed service offering.

3. Cluster Prerequisites
The following settings are recommended for spinning up a cluster on SingleStore

Managed Service.

Items Description Available Settings

1. Cluster Name <set_self_PoC_test_name_db>

2. Cluster Type Development (by default)

3. Choose a Region AWS Virginia 1 Production, GCP Virginia1
Production, AWS Oregon 1 Production, or GCP
Mumbai 1 Production

4. Master User name admin

 7

Self-PoC on SingleStore Managed Service

—

5. Set Cluster Password <set_test_strong_password>

6. Configure Cluster Access
Restriction

**Specify IP Address Range Whitelist and/or
click on ‘Add my current IP address’

Table 1. Prerequisite Settings for SingleStore Managed Service

* Each unit has 8 vCPUs and 64 GB Memory (HA is enabled by default)

** Different ranges must be split into separate lines. We strongly recommend configuring your firewall to restrict which

hosts can access SingleStore .

4. SingleStore Studio
SingleStore Studio is a visual user interface (UI) that allows you to easily monitor, debug

and interact with all of your SingleStore clusters. Designed to be lightweight, easy to

deploy, and easy to upgrade, SingleStore Studio provides the tools you need to maintain

cluster health without the overhead of complex, heavyweight, and error-prone client

software.

SingleStore Studio turns user actions into standard SQL queries that are run against your

SingleStore cluster. Results are then displayed back to you in the form of tables and

graphics that help you understand your cluster better. Conceptually, SingleStore Studio is

a UI on top of the SingleStore database engine itself, pairing the stability and security

guarantees of the command line with the ease of use of a visual UI.

When the cluster is up and running, open Studio and load any sample datasets to quickly

start interacting with SingleStore.

5. Key Functionalities
Learn more about some of the key in-built functionalities in SingleStore that are required

for better understanding of the use cases discussed in following chapters:

 8

https://www.youtube.com/watch?v=mVAxuvWqGFs

Self-PoC on SingleStore Managed Service

—

● SingleStore Pipelines

SingleStore Pipelines is a SingleStore database feature that natively ingests

real-time data from external sources. As a built-in component of the database,

Pipelines can extract, transform, and load external data without the need for

third-party tools or middleware. Pipelines are robust, scalable, and highly

performant, and they support fully distributed workloads.

Pipelines support Apache Kafka, Amazon S3, Azure Blob, Filesystem, and HDFS

data sources. In addition, they natively support the JSON, Avro, and CSV data

formats.

● Shard Key

The shard key is a collection of the columns in a table that are used to control how

the rows of that table are distributed. To determine the partition responsible for a

given row, SingleStore computes a hash from all the columns in the shard key to the

partition ID. Therefore, rows with the same shard key will reside on the same

partition.

● Reference Tables

Reference tables are relatively small tables that do not need to have their data

distributed, and that are present, in the form of a copy, on every node in the cluster.

They are both created, and written to, on the master aggregator. Reference tables

are updated via master-slave replication to every node in the cluster from the

master aggregator. Replication enables reference tables to be dynamic: updates

that you perform to a reference table on the master aggregator are quickly

reflected on every machine in the cluster.

SingleStore aggregators can take advantage of reference tables’ ubiquity by

pushing joins between reference tables and a distributed table onto the leaves.

 9

https://docs.memsql.com/v7.0/concepts/pipelines/pipelines-overview/
https://docs.memsql.com/v7.0/guides/development/development/optimizing-table-data-structures/#shard-keys
https://docs.memsql.com/v7.0/concepts/table/

Self-PoC on SingleStore Managed Service

—
Imagine you have a distributed clicks table storing billions of records and a smaller

customers table with just a few million records. Since the customers table is relatively

small, it can be replicated onto every node in the cluster. If you run a join between

the clicks table and the customers table, then the bulk of the work for the join will

occur on the leaves, in parallel.

6. Operational Analytics: Build a Stock
Ticker Database
This chapter describes steps to build a sample Stock Ticker database on SingleStore

Managed Service. This is a great use case to leverage the operational analytics capability

of Single.

6.1 Use Case - Stock Ticker

Stock market data can be used to analyze and run strong predictive models that may

result in a large financial payoff. The amount of financial data on the web is seemingly

infinite. The dataset* used here consists of the information about historical stock prices

(last five years up to Feb 2018) for the companies found on the S&P 500 index.

The data file consists of the following columns:

● Date - In format: yy-mm-dd

● Open - Price of the stock at market open (this is NYSE data so all in USD)

● High - Highest price reached in the day

● Low Close - Lowest price reached in the day

● Volume - Number of shares traded

● Name - The stock's ticker name

 10

Self-PoC on SingleStore Managed Service

—
Follow the steps below to test and build a sample stock ticker database on SingleStore

Managed Service.

6.2 Reference Architecture
The diagram below shows the reference architecture overview for this use case.

Figure 2. Stock ticker reference architecture

The raw data available from the stock ticker database application is initially loaded into

Amazon S3 buckets. You can load the data into SingleStore Managed Service using the

built-in pipeline functionality in the SingleStore engine. Large sets of data available from

the source are bulk loaded into the database created in a SingleStore Managed Service

cluster in a distributed fashion, using the shard key defined in Data Definition Language

(DDL).

We are leveraging the memory optimized rowstore of SingleStore for this test case. The

distributed, cloud-native architecture helps in managing the data efficiently by delivering

ultra-fast performance and no-limits scalability to perform operational analytics,

 11

Self-PoC on SingleStore Managed Service

—
historical analysis, and predictive modelling using machine learning (ML) and artificial

intelligence (AI). SingleStore Managed Service can be easily integrated with the leading BI

tools (refer to Chapter 7) in order to visualize your results stored for various data

analytics applications.

Follow the steps below to build and explore a sample database for the Stock Ticker

application.

6.3 Spin Up a SingleStore Managed Service Cluster
The cluster deployment phase is a single-click approach upon providing the prerequisite

platform settings. The cluster prerequisites defined in Chapter 3 show the recommended

settings to spin up a free trial version of a SingleStore Managed Service cluster.

The following link demonstrates the steps to spin up a self-managed SingleStore Managed

Service cluster: Create SingleStore Managed Service Cluster

6.4 Create Database and Table Definitions

You can connect with the Studio (visual UI) tool and take advantage of the built-in SQL

editor to deploy the data definition language (DDL) commands.

● Create Database

○ Run this command to drop any existing database named ‘stocks’:

DROP DATABASE IF EXISTS stocks;

○ Run this command to CREATE a new database named ‘stocks’:

CREATE DATABASE stocks;

○ Run this command to switch to stocks database:

USE stocks;

● Deploy the DDL to create table

 12

https://www.youtube.com/watch?v=JEFFAAB966c

Self-PoC on SingleStore Managed Service

—
○ The following command creates a table named ticks :

CREATE TABLE ticks (

dt DATETIME DEFAULT NULL,

open FLOAT DEFAULT NULL,

high FLOAT DEFAULT NULL,

low FLOAT DEFAULT NULL,

close FLOAT DEFAULT NULL,

volume int(11) DEFAULT NULL,

Name VARCHAR(8) CHARACTER SET utf8 COLLATE utf8_general_ci
DEFAULT NULL,

 SHARD KEY tick (Name, dt)

);

6.5 Load Data into SingleStore Managed Service Cluster
Note. For your convenience, sample data sets have been already loaded into a Kafka

cluster, which is managed by SingleStore. If you notice data feeds not functioning as

described, or have any comments or suggestions, please contact SingleStore.

● Create a new S3 Pipeline

CREATE OR REPLACE PIPELINE ticks_pipeline

 AS LOAD DATA S3 'helios-self-poc-stockticker/'

 CONFIG '{"region":"us-east-1"}'

 SKIP DUPLICATE KEY ERRORS

 INTO TABLE ticks

 FIELDS TERMINATED BY ','

 LINES TERMINATED BY '\n';

● Start Pipeline

ALTER PIPELINE ticks_pipeline SET OFFSETS earliest;

START PIPELINE ticks_pipeline;

● Stop Pipeline

STOP PIPELINE ticks_pipeline;

● Check the status of the S3 upload

 13

Self-PoC on SingleStore Managed Service

—
select * from information_schema.pipelines_files;

Note: You can also monitor the status of pipelines by following these steps: Click on

Console in SingleStore Studio tool > Click on Pipelines, or run this command directly

through the SQL editor in the console.

6.6 Run Sample Queries
● Query 1- How many events have we processed?

Select count(*) from ticks;

● Query 2- What stock data are we analyzing?

Select * from ticks limit 100;

● Query 3 - Count the number of events having stock ticker named ‘AAL.’

SELECT count(*) FROM ticks WHERE Name LIKE 'AAL';

● Query 4 - List the top 100 stock data points for the ticker named ‘AAPL.’

SELECT dt,high,low

FROM ticks

WHERE Name LIKE 'AAPL'

GROUP BY high

ORDER BY dt limit 100;

● Query 5 - Find the top 10 average stock data for the ticker named ‘ABBV.’

SELECT dt,AVG(HIGH),AVG(low),AVG(volume)

FROM ticks

WHERE Name LIKE 'ABBV'

GROUP BY high

ORDER BY dt LIMIT 10;

● Query 6 - Find the top 50 average stock data traded on 2013-02-08.
SELECT Name,AVG(HIGH),AVG(low),AVG(volume)

FROM ticks

 14

Self-PoC on SingleStore Managed Service

—
WHERE dt like ‘%2013-02-08%’

Limit 50;

Note: We encourage you to create and run more sample queries that align with your
analytical workloads.

7. Streaming Analytics

7.1 Use Case - Clickstream Advertising

The sample dataset used consists of clickstream advertising data. Marketer researchers

can use clickstream data to infer vital details such as the user’s demographic information,

interests, browsing history and purchasing habits, building up a much more complete

picture of their customer and their online activities. They can delve backwards in time to

find the very first actions that started a user on their journey, or use predictive modelling

to forecast their likely future actions.

7.2 Reference Architecture
The reference architecture diagram shown below gives you an overview of the workflow

for this use case.

 15

https://www.clickz.com/data-privacy-marketers-prepare/255485/

Self-PoC on SingleStore Managed Service

—

Figure 3. Clickstream reference architecture

The data files available from the clickstream advertising application are initially loaded into

a Kafka topic to build a streaming application. You can leverage the Pipelines functionality

(the built-in ETL engine of SingleStore) and stream data directly into the database created

in SingleStore Managed Service. The lock-free ingest technology in SingleStore allows you

to query while you ingest, seamlessly.

The data gets sharded based on the shard key defined in the DDL and stored in a

distributed fashion. We are leveraging the compressed columnstore on disk to store the

test data. You should be able to stream tens of millions of records in a second and

simultaneously issue queries to perform ad hoc and real-time analytics. SingleStore

Managed Service can be easily integrated with the leading BI tools (refer to Chapter 7) in

order to visualize your data for various analytics applications.

Follow these steps to build and explore a sample database for the clickstream advertising

application.

 16

Self-PoC on SingleStore Managed Service

—

7.3 Spin Up a SingleStore Managed Service Cluster

Note: The prerequisite settings recommended in Chapter 2 have to be met before

spinning up the cluster.

The following link demonstrates the steps to spin up a self managed SingleStore Managed

Service cluster: Create SingleStore Managed Service Cluster

7.4 Create Database and Table Definitions

You can connect with the Studio (visual UI) tool and leverage its SQL editor to create the

database, then implement Data Definition Language (DDL) commands.

● Create database

○ Run this command to drop any existing database named adtech:

DROP DATABASE IF EXISTS adtech;

○ Run this command to CREATE a new database named adtech :

CREATE DATABASE adtech;

○ Run this command to switch to the adtech database:

USE adtech;

● Create a table named events:

CREATE TABLE events (

 user_id int,

 event_name varchar(128),

 advertiser varchar(128),

 campaign int(11),

 gender varchar(128),

 income varchar(128),

 page_url varchar(128),

 region varchar(128),

 17

https://www.youtube.com/watch?v=JEFFAAB966c

Self-PoC on SingleStore Managed Service

—
 country varchar(128),

 KEY adtmidx (user_id,event_name,advertiser,campaign)

USING CLUSTERED COLUMNSTORE, SHARD KEY user_id (user_id));

● Create a reference table named campaigns :

CREATE REFERENCE TABLE campaigns (

campaign_id smallint(6) NOT NULL DEFAULT '0',

campaign_name varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci

DEFAULT NULL, PRIMARY KEY (campaign_id));

● Insert sample data into the reference table:

INSERT INTO `campaigns` VALUES (1,'demand great'),(2,'blackout'),(3,'flame

broiled'),(4,'take it from a fish'),(5,'thank you'),(6,'designed by you'),(7,'virtual

launch'),(8,'ultra light'),(9,'warmth'),(10,'run healthy'),(11,'virtual city'),(12,'online

lifestyle'),(13,'dream burger'),(14,'super bowl tweet');

7.5 Load Data into SingleStore Managed Service

Note: For your convenience, sample data sets have been already loaded to a Kafka

cluster, managed by SingleStore. If you notice data feeds not functioning as described, or

have any comments or suggestions, please contact SingleStore.

Kafka topic: public-kafka.memcompute.com/ad_events

● Create the Pipeline named events_pipelines:

CREATE or REPLACE PIPELINE events_pipeline

AS LOAD DATA KAFKA 'public-kafka.memcompute.com:9092/ad_events'

BATCH_INTERVAL 2500

INTO TABLE events

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'

LINES TERMINATED BY '\n' STARTING BY ''

(user_id,event_name,advertiser,campaign,gender,income,page_url,region,country);

 18

Self-PoC on SingleStore Managed Service

—
● Start Pipeline

/* Add ALTER for latest offsets */

ALTER PIPELINE events_pipeline SET OFFSETS earliest;

START PIPELINE events_pipeline;

7.6 Run Sample Queries while Streaming Data

● Query 1 - How many events have we processed?

SELECT COUNT(*) FROM events;

● Query 2 - How many users stands in a specific income range of ‘100K+.’

SELECT user_id,advertiser, event_name,gender,country

FROM events

WHERE income = "100k+"

group by campaign

ORDER BY advertiser desc;

● Query 3 - Find the traditional funnel campaigning information for the advertiser

named Walgreens .

SELECT

Campaign,

Campaign_name,

 impression_count,

 click_count,

 downstream_conversion_count,

 click_count / impression_count AS conv_1,

 downstream_conversion_count / click_count AS conv_2,

 downstream_conversion_count / impression_count AS all_conv

FROM (

 SELECT campaign,

 19

Self-PoC on SingleStore Managed Service

—
 SUM(CASE WHEN (event_name="Impression") THEN 1 ELSE null END) AS

impression_count,

SUM(CASE WHEN (event_name="Click") THEN 1 ELSE null END) AS click_count,

SUM(CASE WHEN (event_name="Downstream Conversion") THEN 1 ELSE null

END) AS downstream_conversion_count

FROM events

WHERE advertiser = "Walgreens"

group by campaign) tab

LEFT JOIN campaigns ON campaigns.campaign_id = campaign

ORDER BY all_conv desc;

● Query 4 - Find the conversion metrics information for the advertiser named

Walgreens.

SELECT campaign, advertiser, country, SUM(CASE WHEN

(event_name="Impression") THEN 1 ELSE null END) AS impression_count,

SUM(CASE WHEN (event_name="Click") THEN 1 ELSE null END) AS click_count,

SUM(CASE WHEN (event_name="Downstream Conversion") THEN 1 ELSE null

END) AS downstream_conversion_count

FROM events

WHERE advertiser = "Walgreens";

● Query 5 - Targeted campaign information for advertiser named McDonalds.

SELECT user_id, page_url,region, country,

SUM(CASE WHEN (event_name="Click") THEN 1 ELSE null END) AS click_count,

 SUM(CASE WHEN (event_name="Downstream Conversion") THEN 1 ELSE null

END) AS downstream_conversion_count

FROM events

WHERE advertiser = "McDonalds"

group by campaign

ORDER BY user_id desc;

 20

Self-PoC on SingleStore Managed Service

—

Note: We encourage you to try out more sample queries that align with your regular

workloads.

8. Real-time Geospatial Analysis on
Ride-sharing Data

8.1 Use Case: Real-time Insights on Ride-sharing Data

This use case simulates taxi or ride-sharing data collected from New York City, that can be

ingested and analyzed in the SingleStore engine. Three pipelines are used to stream data

from their corresponding topics in a public Kafka cluster. You will be running analytics

while ingesting highly concurrent streaming data. The queries used are capable of running

cross-joins across multiple tables, executing geospatial functions etc. against streaming

data, and helping end users make decisions based on real-time insights.

8.2 Reference Architecture
The reference architecture diagram shown below gives you an overview about the

workflow for this use case.

 21

Self-PoC on SingleStore Managed Service

—

Figure 4. Reference architecture overview

The data files are streamed into multiple Kafka topics to build a streaming application. The

Pipelines functionality in SingleStore can be leveraged to perform real-time streaming of

data into SingleStore Managed Service database. We take advantage of the optimized

rowstore technology in SingleStore (sharded by a predefined primary key) to uniformly

distribute the data among the leaf nodes. The end users should be able to receive

up-to-date information for their queries, as this unique architecture can seamlessly

deliver real-time insights from the rapidly changing data, streamed through the Kafka

cluster. SingleStore Managed Service can be easily integrated with the leading BI tools

(refer to Chapter 7) in order to visualize your data for various analytics applications.

8.3 Spin Up a SingleStore Managed Service Cluster
Note: The prerequisite settings recommended in Chapter 2 have to be met before

spinning up the cluster.

 22

Self-PoC on SingleStore Managed Service

—
The following link demonstrates the steps to spin up a self managed SingleStore Managed

Service Cluster: Create SingleStore Managed Service Cluster

8.4 Create Database and Table Definitions
You can connect with the Studio (visual UI) tool and leverage its SQL editor to create the

database followed by the implementation of Data Definition Language (DDL) commands.

Before creating a new pipeline, a database and table with the appropriate schema must

exist. The following SQL commands will create a new database named nyc_taxi , and then

create 3 tables in the database: drivers, neighborhoods, and trips.

● Create Database

○ Drop any existing database named nyc_taxi:

DROP DATABASE IF EXISTS nyc_taxi;

○ Create a new database named nyc_taxi :

CREATE DATABASE nyc_taxi;

○ Switch to the nyc_taxi database:

USE nyc_taxi;

● Create a table named drivers :

CREATE TABLE drivers (

 id bigint(20) NOT NULL,

 first_name varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci
DEFAULT NULL,

 last_name varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci
DEFAULT NULL,

 location geographypoint NOT NULL,

 goal_location geographypoint DEFAULT NULL,

status varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT
NULL,

 trip_id bigint(20) DEFAULT -1,

 PRIMARY KEY (id),

 23

https://www.youtube.com/watch?v=JEFFAAB966c

Self-PoC on SingleStore Managed Service

—
 KEY location (location));

● Create a table named neighborhoods:

CREATE TABLE neighborhoods (

 id bigint(20) NOT NULL,

name varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT
NULL,

 borough varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT
NULL,

polygon geography DEFAULT NULL,

 PRIMARY KEY (id));

● Create a table named trips:

CREATE TABLE trips (id bigint(20) NOT NULL,

 status varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT
NULL,

 pickup_location geographypoint NOT NULL DEFAULT 'Point(0 0)',

 dropoff_location geographypoint NOT NULL DEFAULT 'Point(0 0)',

 request_time int(11) DEFAULT NULL,

 request_attempts int(11) NOT NULL DEFAULT 1,

 accept_time int(11) DEFAULT NULL,

 pickup_time int(11) DEFAULT NULL,

 dropoff_time int(11) DEFAULT NULL,

 num_riders int(11) DEFAULT NULL,

 price int(11) DEFAULT NULL,

 driver_id bigint(20) NOT NULL DEFAULT 0,

 PRIMARY KEY (id));

 24

Self-PoC on SingleStore Managed Service

—

8.5 Load Data into SingleStore Managed Service
Note: For your convenience, sample data sets have been already loaded to a Kafka cluster,

managed by SingleStore Managed Service. If you notice data feeds not functioning as

described, or have any comments or suggestions, please contact SingleStore.

For the sample stream, we will be publishing the status of 1000 drivers every second, and

publishing 50 trips every thirty seconds. The “neighborhoods” stream is a static data set,

and will not be updated after the initial load.

The following topics in a public Kafka cluster are used as pipeline data sources. Since a

Kafka pipeline is paired with a single Kafka topic, in the following sections you will create

one pipeline for each of these topics:

public-kafka.memcompute.com/drivers

public-kafka.memcompute.com/trips

public-kafka.memcompute.com/neighborhoods

● Create a Pipeline named drivers:

CREATE or REPLACE PIPELINE drivers

AS LOAD DATA KAFKA 'public-kafka.memcompute.com:9092/drivers'

BATCH_INTERVAL 2500

INTO TABLE drivers

FIELDS TERMINATED BY ',' ENCLOSED BY '' ESCAPED BY '\\'

LINES TERMINATED BY '\n' STARTING BY '';

● Create a Pipeline named trips:

CREATE or REPLACE PIPELINE trips

AS LOAD DATA KAFKA 'public-kafka.memcompute.com:9092/trips'

BATCH_INTERVAL 2500

INTO TABLE trips

FIELDS TERMINATED BY ',' ENCLOSED BY '' ESCAPED BY '\\'

LINES TERMINATED BY '\n' STARTING BY '';

 25

Self-PoC on SingleStore Managed Service

—

● Create a Pipeline named neighborhoods:

CREATE or REPLACE PIPELINE neighborhoods

AS LOAD DATA S3 'memsql-datafeeds/nyc-taxi-data/'

CONFIG '{"region":"us-east-1"}'

SKIP DUPLICATE KEY ERRORS

INTO TABLE neighborhoods

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'

LINES TERMINATED BY '\n' STARTING BY '';

● Start Pipeline:

ALTER PIPELINE drivers SET OFFSETS EARLIEST;

ALTER PIPELINE trips SET OFFSETS EARLIEST;

START PIPELINE drivers;

START PIPELINE trips;

START PIPELINE neighborhoods;

● Commands to stop the Pipelines:

STOP PIPELINE drivers;

STOP PIPELINE trips;

STOP PIPELINE neighborhoods;

STOP ALL PIPELINES;

● Run this command to check the status of the upload into S3:

select * from information_schema.pipelines_files;

8.6 Run Sample Queries while Streaming Real-time Data
Query 1 - Total number of trips for each neighborhood.

Note: This query joins across multiple tables and executes geospatial functions while

ingesting streaming data.

 26

Self-PoC on SingleStore Managed Service

—
SELECT COUNT(*) num_rides, n.name

FROM trips t, neighborhoods n

WHERE

 n.id IN (

 SELECT id FROM neighborhoods

) AND

 GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon)

GROUP BY n.name

ORDER BY num_rides DESC;

Query 2 - The average amount of time between someone requesting a ride and that

person being picked up.

SELECT ROUND(AVG(pickup_time - request_time) / 60,2) val

FROM trips t, neighborhoods n

WHERE

 n.id IN (

SELECT id FROM neighborhoods) AND

GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon) AND

pickup_time != 0 AND

request_time != 0;

Query 3 - The average distance of a trip.

SELECT ROUND(AVG(geography_distance(pickup_location, dropoff_location) /
1000), 2) val

FROM trips t, neighborhoods n

WHERE

 n.id IN (

 SELECT id FROM neighborhoods) AND

 GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon);

 27

Self-PoC on SingleStore Managed Service

—
Query 4 - The average amount of time between someone being picked up and that person

being dropped off.

SELECT ROUND(AVG(dropoff_time - pickup_time) / 60, 2) val

FROM trips t, neighborhoods n

WHERE

status = "completed" AND

 n.id IN (

 SELECT id FROM neighborhoods) AND

 GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon);

Query 5 - The average cost of a trip.

SELECT ROUND(AVG(price), 2) val

FROM trips t, neighborhoods n

WHERE

 status = "completed" AND

 n.id IN (

 SELECT id FROM neighborhoods

) AND

 GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon);

Query 6 - The average amount of time it takes from the time a driver accepts a ride to the

time they pick up the passenger.

SELECT ROUND(AVG(pickup_time - accept_time) / 60, 2) val

FROM trips t, neighborhoods n

WHERE

 pickup_time != 0 AND

 accept_time != 0 AND

 n.id IN (

 SELECT id FROM neighborhoods

 28

Self-PoC on SingleStore Managed Service

—
) AND

 GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon);

Query 7 - The average number of riders per trip.

SELECT ROUND(AVG(num_riders), 2) val

FROM trips t, neighborhoods n

WHERE

 status = "completed" AND

 n.id IN (

SELECT id FROM neighborhoods) AND

GEOGRAPHY_INTERSECTS(t.pickup_location, n.polygon);

9. Visualize Data with Business Intelligence
(BI) Tools
A sample dashboard built for a ClickStream Advertising application by integrating

SingleStore Managed Service with Looker will look like the diagram below (Figure 4).

Figure 4. Sample dashboard for clickstream advertising

 29

Self-PoC on SingleStore Managed Service

—
SingleStore partners with the leading third-party BI tool providers to perform data

visualization and real-time analytics using the data stored in your SingleStore Managed

Service cluster. Most of the leading BI tools have been successfully integrated, tested, and

certified by SingleStore through our partnership program.

The following how-to guides show you the step-by-step approach involved in integrating

SingleStore Managed Service with BI tools. Listed below are our trusted partners:

● Tableau

● Looker

● Data Virtuality Pipes

● Informatica Cloud

● Power BI

● Talend with Open Studio

● Dremio

● Tibco Spotfire

● MicroStrategy

● Streamsets

● Spark

● Sisense

● Collibra

● Zoomdata

10. Conclusion
As the amount of data across modern data-driven organizations grows, the challenges

involved in managing the data become more complicated. You need a highly performing,

 30

https://help.tableau.com/current/pro/desktop/en-us/examples_memsql.htm
https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/connecting-to-looker/
https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/connecting-to-data-virtuality-pipes/
https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/connecting-to-informatica-cloud/
https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/connecting-to-powerbi/
https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/connecting-to-talend/
https://docs.memsql.com/v7.1/third-party-integrations/connecting-to-dremio/
https://docs.memsql.com/v7.0/third-party-integrations/connecting-to-tibcospotfire/
https://docs.memsql.com/v7.1/third-party-integrations/connecting-to-microstrategy/
https://docs.memsql.com/v7.1/third-party-integrations/connecting-to-streamsets/
https://docs.memsql.com/v7.1/third-party-integrations/spark-3-connector/
https://docs.memsql.com/v7.1/third-party-integrations/connecting-to-sisense/
https://docs.memsql.com/v7.1/third-party-integrations/connecting-to-collibra/
https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/connecting-to-zoomdata/

Self-PoC on SingleStore Managed Service

—
self-managed database in the cloud, that is robust and scalable enough to meet the

demanding requirements of your operational and analytical workloads.

SingleStore Managed Service, a fully-managed service offering of SingleStore, stands

apart, with its unique excellence in distributed cloud-native architecture, by delivering

ultra-fast performance and scalability for cloud workloads. The different use cases

described in this paper demonstrate: (i) how easily you can spin up a cluster, (ii) bulk load

or real-time streaming of sample data sets, (iii) running ad-hoc analytics on real-time data,

and (iv) easy integration with BI tools to visualize the data stored in a SingleStore

Managed Service cluster.

With the SingleStore Managed Service database, you don’t have to worry about complex

database infrastructure management tasks such as server provisioning, cluster setup,

patching, backup or recovery, as they are all fully automated. This allows developers to

stay focused on the application development lifecycle.

Many enterprises are leveraging SingleStore Managed Service for building smarter

applications that can deliver data-driven decision-making capability, which the company

can run with dramatic cost savings. Being able to ingest millions of events per second from

S3, Kafka, Hadoop, Spark, Azure blob and more, with query response time in milliseconds,

SingleStore Managed Service is an ideal solution for use cases such as real-time and

near-real-time reporting, historical analysis, and operational analytics. SingleStore

Managed Service can be considered as a great database solution for solving some of the

complex big data problems in our data-driven world.

With SingleStore Managed Service now publicly available, we hope that you can

experience it for yourself, and share your success story.

Test drive SingleStore Managed Service at singlestore.com/managed-service/

 31

https://www.memsql.com/helios/

